Synthesis and structural characterisation of the acetylene-linked dimeric cluster $\left[\left\{\mathrm{Co}_{2}(\mathrm{CO})_{6} \mathrm{PhC}_{2}\right\}_{2}\right]$

Brian F.G. Johnson, Jack Lewis *, Paul R. Raithby and Della A. Wilkinson
University Chemical Laboratory, Lensfield Road, Cambridge CB2 IEW (UK)

(Received February 1st, 1991)

Abstract

An acetylene-linked dimeric complex has been prepared from the reaction of $\left[\mathrm{CO}_{2}(\mathrm{CO})_{8}\right]$ with $\mathrm{PhC}_{2} \mathrm{MPPh}_{3}(\mathrm{M}=\mathrm{Ag}$ or Au$)$ or $\left[\mathrm{Hg}\left(\mathrm{C}_{2} \mathrm{Ph}\right)_{2}\right]$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. An X-ray structure determination revealed that the product was not the expected acetylene derivative $\left[\mathrm{Co}_{2}(\mathrm{CO})_{6}\left(\mathrm{PhC}_{2} \mathrm{MPPh}_{3}\right)\right]$ or $\left.\left[\left\{\mathrm{CO}_{2}(\mathrm{CO})_{6} \mathrm{PhC}_{2}\right\}_{2} \mathrm{Hg}\right)\right]$, but contained two $\left[\mathrm{Co}_{2}(\mathrm{CO})_{6} \mathrm{PhC}_{2}\right]$ units linked by a $\mathrm{C}-\mathrm{C}$ bond to give the dimer $\left[\left\{\mathrm{Co}_{2}(\mathrm{CO})_{6} \mathrm{PhC}_{2}\right\}_{2}\right]$.

We are currently interested in the chemistry of polymeric materials which contain clusters supported on a carbon backbone. There have been a number of reports of cobalt-based clusters in polymeric materials. Patin et al. [1] reported the synthesis of the monomer $\left[\mathrm{RCCO}_{3}(\mathrm{CO})_{9}\right]\left(\mathrm{R}=1,4-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}=\mathrm{CH}_{2}\right)$ which undergoes free radical copolymerisation with styrene or methyl acrylate to produce new polymeric materials [2]. Seyferth et al. [3] have also prepared several polymerizable monomers of a similar type although no experimental details are available regarding their polymerization. Polymers containing the $\left[\mathrm{Co}_{2}(\mathrm{CO})_{6} \mathrm{C}_{2}\right]$ unit are known [3,4]. Most importantly, Magnus and Becker [4] have reported the synthesis of the dimers $\left[\left\{\mathrm{Co}_{2}(\mathrm{CO})_{6}\left(\mathrm{Me}_{3} \mathrm{SiC}_{2}\right)\right\}_{2}\right]$ and $\left[\left\{\mathrm{Co}_{2}(\mathrm{CO})_{6}\right\}_{2}\left(\mathrm{Me}_{3} \mathrm{SiC}_{2} \mathrm{C}_{2} \mathrm{H}\right)\right]$. These contain two linked $\left[\mathrm{Co}_{2}(\mathrm{CO})_{6} \mathrm{C}_{2}\right]$ units and are relevant to the work discussed here. More recently, the compounds $\left[\mathrm{Co}_{2}(\mathrm{CO})_{6}\left(\mathrm{RC}_{2} \mathrm{H}\right)\right.$] have been reported [5] to undergo oxidativecoupling to generate a trimer; a hexacobalt complex of cyclo[18]carbon and dimer $\left[\left\{\mathrm{Co}_{2}(\mathrm{CO})_{4}(\mathrm{dppm})\left(\mathrm{Me}_{3} \mathrm{SiC}_{2} \mathrm{C}_{2}\right)\right\}_{2}\right]$. Here we wish to report the synthesis and full characterisation of the dimer $\left[\left\{\mathrm{Co}_{2}(\mathrm{CO})_{6} \mathrm{PhC}_{2}\right\}_{2}\right], \mathbf{1}$.

On reaction of dicobalt octacarbonyl, $\left[\mathrm{Co}_{2}(\mathrm{CO})_{8}\right]$, with $\mathrm{PhC}_{2} \mathrm{MPPh}_{3}(\mathrm{M}=\mathrm{Ag}$ or Au or $\left[\mathrm{Hg}\left(\mathrm{C}_{2} \mathrm{Ph}\right)_{2}\right]$, in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, the initial brown solution turns first to red and then to green. After separation by TLC using hexane/THF as eluant two compounds are obtained. The first red-brown solid is formed in very low yield and it has not been possible to fully characterise this compound. However, on the basis of its IR spectrum (ν (CO) 2094 (m), 2081 (w), 2062 (vs), 2037 (vs), 2032 (vs, sh), 1988 (w, br) cm^{-1}) which is similar to $\left[\mathrm{Co}_{2}(\mathrm{CO})_{6}\left(\mathrm{PhC}_{2} \mathrm{H}\right)\right]$, we tentatively formulate this compound as $\left[\mathrm{Co}_{2}(\mathrm{CO})_{6}\left(\mathrm{PhC}_{2} \mathrm{MPPh}_{3}\right)\right]$. The major product, which is the same irrespec-

Fig. 1. The molecular structure of $\left\{\left\{\mathrm{Co}_{2}(\mathrm{CO})_{6} \mathrm{PhC}_{2}\right\}_{2}\right.$ showing the atom labelling. Bond lengths: $\mathrm{Co}(1)-\mathrm{Co}(2), 2.461(1) ; \mathrm{Co}(3)-\mathrm{Co}(4), 2.461(1) ; \mathrm{Co}(1)-\mathrm{C}(1), 1.976(6) ; \mathrm{Co}(1)-\mathrm{C}(2), 1.979(6) ; \mathrm{Co}(2)-\mathrm{C}(1)$, $1.956(6) ; \mathrm{Co}(2)-\mathrm{C}(2), 1.984(6) ; \mathrm{C}(1)-\mathrm{C}(2), 1.336(8) ; \mathrm{Co}(3)-\mathrm{C}(3), 1.993(6) ; \mathrm{Co}(3)-\mathrm{C}(4), 1.953(6) ; \mathrm{Co}(4)-$ $C(3), 1.981(6) ; C o(4)-C(4), 1.966(6) ; C(3)-C(4), 1.331(8) \AA$. Bond angles: $C(2)-C(1)-C(101), 140.8(6)$; $C(3)-C(4)-C(201), 137.6(6) ; C(1)-C(2)-C(3), 144.6(6) ; C(2)-C(3)-C(4), 138.9(6)^{\circ}$.
tive of whether $\mathrm{PhC}_{2} \mathrm{MPPh}_{3}$ or $\left[\mathrm{Hg}\left(\mathrm{C}_{2} \mathrm{Ph}\right)_{2}\right]$, is employed, is green. The EI mass spectrum of the green component shows a parent ion at $m / z=774 \mathrm{amu}$ and has a fragmentation pattern which shows the loss of twelve carbonyl ligands. This mass spectrum together with the microanalytical data shows the stoicheiometry to be $\mathrm{Co}_{2} \mathrm{C}_{14} \mathrm{H}_{5} \mathrm{O}_{6}$ corresponding to the formulation [$\left.\left\{\mathrm{Co}_{2}(\mathrm{CO})_{6} \mathrm{PhC}_{2}\right\}_{2}\right]$ (rrm 773.4). The new cluster cxhibits IR carbonyl absorptions at 2101 (m), 2082 (s), 2062 (vs), 2037 (s), 2028 (s, sh), 1984 (w, br) cm^{-1}. These are very similar to those observed [6] for other related species such as $\left[\mathrm{Co}_{2}(\mathrm{CO})_{6}\left(\mathrm{PhC}_{2} \mathrm{H}\right)\right]$ and $\left[\mathrm{Co}_{2}(\mathrm{CO})_{6}\left(\mathrm{PhC}_{2} \mathrm{Ph}\right)\right]$. The ${ }^{1} \mathrm{H}$ NMR spectrum of 1 in $\mathrm{C}_{6} \mathrm{D}_{12}\left(250 \mathrm{MHz}, 20^{\circ} \mathrm{C}\right)$ shows two broad peaks in the aromatic region, centred at ca. $\delta 7.5(2 \mathrm{H})$ and $7.2(3 \mathrm{H}) \mathrm{ppm}$, which confirm the presence of the CPh unit. The ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of 1 (in $\mathrm{CDCl}_{3}, 100.6 \mathrm{MHz}$, $20^{\circ} \mathrm{C}$) is well resolved and exhibits seven signals at $\delta 93.03,99.28,127.93,128.66$, $129.28,138.35$, and 198.79 ppm . This spectrum has features in common with the spectra found for the other cobalt-diyne complexes discussed above. A comparison of the ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of 1 with that of $\left[\mathrm{Co}_{2}(\mathrm{CO})_{6}\left(\mathrm{PhC}_{2} \mathrm{Ph}\right)\right][7]$ reveals marked similarities in the aromatic region. Further comparison of the ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of 1 with that recorded for the complex [$\left\{\mathrm{Co}_{2}(\mathrm{CO})_{6}\right\}_{2}\left(\mathrm{HC}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{C}_{6}-\right.$ $\left.\mathrm{H}_{4} \mathrm{C}_{2} \mathrm{H}\right)$] allowed us to the assign the signal at $\delta 93.03 \mathrm{ppm}$ to the carbon atom $\mathrm{C}(1)$ (see Fig. 1) attached to the phenyl ring since the chemical shift is close to the resonance attributed to the similar proton in [\{ $\left.\left.\mathrm{Co}_{2}(\mathrm{CO})_{6}\right\}_{2}\left(\mathrm{HC}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{C}_{2} \mathrm{H}\right)\right]$. The remaining signal at $\delta 99.28 \mathrm{ppm}$ is therefore due to the "alkyne" carbon atom joined to the $\left\{\mathrm{Co}_{2}(\mathrm{CO})_{6} \mathrm{C}_{2}\right\}$ moiety. The low field resonance at $\delta 199.79 \mathrm{ppm}$ may
be assigned to the two equivalent sets of carbonyl ligands which at this temperature are clearly undergoing fluxional processes.

In order to confirm the spectroscopic assignments a single-crystal X-ray structure determination was undertaken. Suitable dark green platelets were obtained from hexane at $0^{\circ} \mathrm{C}$. The molecular structure of $\left[\left\{\mathrm{Co}_{2}(\mathrm{CO})_{6} \mathrm{PhC}_{2}\right\}_{2}\right]$, together with selected bond parameters is shown in Fig. 1^{*}. The overall structure resembles that of $\left[\left\{\mathrm{Co}_{2}(\mathrm{CO})_{6} \mathrm{Me}_{3} \mathrm{SiC}_{2}\right\}_{2}\right][4]$, with the two $\left\{\mathrm{Co}_{2}(\mathrm{CO})_{6} \mathrm{C}_{2}\right\}$ units linked through an "alkyne" carbon atom, and the "alkyne" $\mathrm{C} \equiv \mathrm{C}$ vectors lying perpendicular ot the $\mathrm{Co}-\mathrm{Co}$ vectors. The two independent $\mathrm{Co}-\mathrm{Co}$ bond lengths are equal (2.461(1) \AA), and are similar in length to the average value of $2.474 \AA$ found in [$\left\{\mathrm{CO}_{2}(\mathrm{CO})_{6} \mathrm{Me}_{3} \mathrm{SiC}_{2}\right\}_{2}$] [4]. Although the estimated standard deviations on the $\mathrm{Co}-\mathrm{C}$ (alkyne) bond lengths are rather high to make detailed comments, the $\mathrm{Co}-\mathrm{C}$ lengths within the quasi-tetrahedra can be divided into two groups, with "long" and "short" interactions. The Co-C distances involving the two linked carbons, $\mathrm{C}(2)$ and $\mathrm{C}(3)$ (average $1.96 \AA$), are ca. $0.02 \AA$ shorter than the distances involving $\mathrm{C}(1)$ and $\mathrm{C}(4)$ (average $1.98 \AA$). This tilting of the $\mathrm{C}-\mathrm{C}$ vector with respect to the $\mathrm{Co}-\mathrm{Co}$ vector presumably reflects the difference in the nature of the substituents on the "alkyne" carbons. In the related alkyne complexes $\left[\mathrm{Co}_{2}(\mathrm{CO})_{6}\left(\mathrm{PhC}_{2} \mathrm{Ph}\right)\right]$ and $\left[\mathrm{Co}_{2}(\mathrm{CO})_{6}\left({ }^{t} \mathrm{BuC}_{2}{ }^{\mathrm{t}} \mathrm{Bu}\right)\right]$ [7], where the substituent groups are the same, in each complex, no such tilting is observed. The central carbon-carbon bond observed in $\left[\left\{\mathrm{CO}_{2}(\mathrm{CO})_{6} \mathrm{PhC}_{2}\right\}_{2}\right](\mathrm{C}(2)-\mathrm{C}(3) 1.430(8) \AA)$ is significantly longer than the "alkyne" carbon-carbon bonds, $C(1)-C(2)(1.336(8) \AA)$ and $C(3)-C(4)(1.331(8) \AA)$, which are equal to within experimental error. This central carbon-carbon bond distance shows reasonable agreement with the corresponding bond length in $\left[\left\{\mathrm{Co}_{2}(\mathrm{CO})_{6} \mathrm{Me}_{3} \mathrm{SiC}_{2}\right\}_{2}\right]$ of $1.432 \AA$ [4]. Although longer than the "alkyne" bonds, the central carbon-carbon bond is significantly shorter than expected for a single carbon-carbon bond. This suggests that delocalisation of the electron density from the "alkyne" bonds along the carbon backbone of the molecule has occurred. The carbon-carbon "alkyne" bonds show a lengthening from the distances anticipated for a $\mathrm{C}=\mathrm{C}$ bond, in a free alkyne ($1.18 \AA$) [8], which is entirely consistent with delocalisation of electron density into the Co_{2} units and into the $\mathrm{C}-\mathrm{C}$ linking bond. The $\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$ and $\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$ bond angles of $144.6(6)^{\circ}$ and $138.9(6)^{\circ}$, respectively, have been greatly reduced from the 180° seen in alkynes, but are similar to the equivalent angle of 146.7° observed in [$\left\{\mathrm{Co}_{2}(\mathrm{CO})_{6} \mathrm{Me}_{3} \mathrm{SiC}_{2}\right\}_{2}$] [4].

These studies suggest that the formation of complexes of the type $\left[\mathrm{Co}_{2}(\mathrm{CO})_{6}\left(\mathrm{PhC}_{2} \mathrm{MPPh}_{3}\right)\right]$ appears to occur in the initial stages of the reactions of $\mathrm{PhC} \equiv \mathrm{CMPPh}_{3}$ with $\left[\mathrm{Co}_{2}(\mathrm{CO})_{8}\right](\mathrm{M}=\mathrm{Au}$ or Ag$)$ as indicated by the initial formation of a red solution, the IR of which compared favourably to those of the

[^0]complexes, $\left[\mathrm{Co}_{2}(\mathrm{CO})_{6}\left(\mathrm{RC}_{2} \mathrm{R}^{\prime}\right)\right]$. However, these species are not stable and quickly lose the bulky AuPPh_{3} group to generate the complex $\left[\left\{\mathrm{Co}_{2}(\mathrm{CO})_{6}\left(\mathrm{PhC}_{2}\right)\right\}_{2}\right]$ in a manner similar observed in the formation of $\left[\left\{\mathrm{Co}_{2}(\mathrm{CO})_{6}\left(\mathrm{Me}_{3} \mathrm{SiC}_{2}\right)\right\}_{2}\right]$ from $\left[\mathrm{Co}_{2}(\mathrm{CO})_{6}\left(\mathrm{Me}_{3} \mathrm{SiC}_{2}\right)\right] \mathrm{Li}$ [4]. A red dimer of the same formulation has previously been described [9] as the product of the reaction of $\left[\mathrm{Co}_{2}(\mathrm{CO})_{8}\right]$ with $\mathrm{PhC}_{2} \mathrm{SnMe}_{3}$. We have repeated this earlier reaction [10] and believe the product to be the red complex, $\left[\mathrm{Co}_{2}(\mathrm{CO})_{6} \mathrm{PhC}_{2} \mathrm{SnMe}_{3}\right]$.

Acknowledgements. We wish to thank Ciba-Geigy (D.A.W.) for financial support.

References

1 H. Patin, G. Mignani and M-T. Van Hulle, Tetrahedron Letters, (1979) 2441.
2 H. Patin, J.C. Gressier and G. Levesque, Polym. Bull. (Berlin), 8 (1982) 55.
3 D. Seyferth and H.P. Withers, Inorg. Chem., 22 (1983) 2931.
4 P. Magnus and D.P. Becker, J. Chem. Soc., Chem. Commun., (1985) 640.
5 Y. Rubin, C.B. Knobler and F. Diederich, J. Am. Chem. Soc., 112 (1990) 4966.
6 G. Bor, F.A. Kettle and P.L. Stangellini, Inorg. Chim. Acta, 18 (1976) LI8.
7 D. Gregson and J.A.K. Howard, Acta Crystallogr., C, 39 (1983) 1024.
8 F.H. Allen, O. Kennard, D.G. Watson, L. Brammer, A.G. Orpen and R. Taylor, J. Chem. Soc., Perkin Trans. II, (1987) S1.
9 M.F. Lappert, B. Cetinkaya, J. McMeeking and D.E. Palmer, J. Chem. Soc., Dalton Trans., (1973) 1202.

10 B.F.G. Johnson, J. Lewis, P.R. Raithby, M.E. Kobson and D.A. Wilkinson, J. Chem. Soc., Dalton Trans., submitted.

[^0]: * 1: $\mathrm{C}_{28} \mathrm{H}_{10} \mathrm{O}_{12} \mathrm{Co}_{4}, M$ 773.4, monoclinic, space group $P 2_{1} / n$ (alt. setting $P 2_{1} / c$, No. 14), $a 8.962(1), b$ $17.714(1), c 18.575(2) \AA, \beta 90.61(1)^{\circ}, V 2949 \AA^{3}, Z=4, D_{\mathrm{c}} 1.743 \mathrm{~g} \mathrm{~cm}^{-3}, F(000)=1528, \mu\left(\mathrm{Mo}-K_{\alpha}\right)$ $=0.64 \mathrm{~cm}^{-1} .4419$ reflections measured on a Stoe four-circle diffractometer with graphite-monochromated Mo- K_{α} radiation ($\lambda 0.71069 \AA$), and $2 \theta_{\max } 45^{\circ}, 3524$ unique data ($R_{\text {int }}=0.025$), and 2902 observed with $F>4 \sigma(F)$. Structure solved by direct methods (Co atoms) and Fourier difference techniques, and refined by blocked full-matrix least-squares (all non-hydrogen atoms anisotropic) to $R=0.053$ and $R_{w}=0.051$; hydrogen atoms placed in fixed positions riding on relevant C atoms. Details of atomic coordinates, thermal parameters, bond parameters and structure factors may be obtained from the authors.

